Styczeń 2011

26. W modelach typu Płyta przy <u>obrocie całego modelu</u> względem wybranego punktu (menu Węzły, opcja Obróć węzły) zostaje zachowana konfiguracja słupów i ścian względem siatki.

27. W modelach typu Płyta lub Obiekt, w których zadano podłoże Winklera bez cech nieliniowych, w module Wyniki pojawi się przycisk Iteracje. Pozwoli on na stworzenie nowego zadania w którym może być zsumowane obciążenie, tak jak dla obliczeń nieliniowych.

Obliczenia iteracyjne	
Iteracje 10 × Maksymalna liczba ite 1% × Dokładność rozwiąze	Pracji 2. Sity wariant dla którego będą obliczenia 2. Sity węzłowe 3. Sity liniowe 4/1. Dodatkowy
Opis zadania Plyta (Nieliniowe)	
Nazwa zadania Przeglądaj WinklerN	Wertości obliczeniowe 1.0

Po kliknięciu w przycisk OK. zostanie wywołany moduł Dane, w którym będzie można wymienić podłoże Winklera na podłoże Uwarstwione lub Jednorodne. Potem można uruchomić obliczenia, liniowe lub nieliniowe w zależności od cech zadanego podłoża.

Takie zadanie będzie sygnalizowane komunikatem:

. . .

28. Użytkownicy posiadający tylko program ABC Obiekt3D mogą otworzyć zadanie przygotowane w programie ABC Rama3D, jeśli będzie miało kategorię ramy przestrzennej. Pojawi się wtedy pytanie:

Komputer Dysk : C: Wolne : 8554 MB	Użytkownik Numer licencji : 1433 Firma :	Wersja z: 2011.01.24	<u>?</u> M
Pamięć: 2047 MB Zadań: 14	ANIE		
A Ostatnie zadan Nowe zadanie	Zamienić model na OBIE	KT3D?	
		Kanwarsia z warsii 5	Obiekt3
Lista zadań		Kunwersja z wersji J	

Po naciśnięciu przycisku Tak zadanie otrzyma kategorię Obiekt3D i będzie można go przeglądać i edytować. Kopii tego zadania z kategorią Rama3D nie będzie.

Opis zadania	<u>Dgölne</u>
Raport	Węzły
Zapisz kopię.,	lementy
Jako Rama3D	<u>Aaterial</u>
Belki + Płyty	
Podkład CAD	rzekrój

Zadania przygotowane w programie ABC Obiekt3D, zawierające tylko elementy belkowe można zapisać ze zmianą kategorii na ramę przestrzenną. W menu Ogólne jest nowa opcja Jako Rama3D. Jej działanie jest bardzo podobne do Zapisz kopię.. tyle, że zadanie uzyskuje status ramy przestrzennej i może być otwierane przez użytkowników posiadających tylko program ABC Rama3D.

Luty 2011

29. W module Wyniki, w menu Pokaż pojawiły się dwie opcje, dostępne tylko w modelach płytowych, tarczowych i powłokowych. Pozwalają one pokazać miejsca innych niż najmniejsza grubość, oraz pozwalają odczytać wartość grubości.

30. Dla modeli powłokowych, w menu Ogólne pojawiła się opcja "Pełny opis grubości". Po jej włączeniu w modelu zostanie tylko jedna grubość, ale będzie można grubości zadawać opisane 14 parametrami. Można w ten sposób modelować blachy faliste, płyty żebrowe, płyty wkładkami \mathbf{Z} styropianowymi itp. Parametry opisujące grubości dla stanu tarczowego i zgięciowego najlepiej dobrać modelujac prostokatny obszar płaszczyźnie W XY, zamodelowany wiernie geometrycznie. Obciążając go

_{pis} t=0,16m	Zwykła gr	ubość	
Tarcza mn. naprężenia dla sztywności mn. naprężenia tTx 0,16m * 0,1 tTy 0,1m * 1 tTy 0,13m * 0,55 * *	Płyta dla sztywności tPx ⁻ 0,05m × tPy ⁻ 0,1m × tPx ⁻ y 0,075m ×	dla naprężeń 0,03m · 0,2m · 0,115 · 0,16m ·	Anuluj
 arytmetyczna geometryczna (Grubość gabarytowa np. do zbrojenia żelbetu)	0,2m	ОК

równomiernie w kierunku osi X i Y można poznać przemieszczenie w kierunku działania obciążenia. W ten sposób określi się zastępcze grubości dla stanu tarczowego. Można też wyznaczyć mnożniki naprężeń w płycie zastępczej. Obciążając z kolei w kierunku osi Z można wyznaczyć zastępcze grubości potrzebne dla sztywności płyty jak i dla naprężeń. W menu Grubość pojawiła się też opcja Edycja.

Zadania z takim opisem grubości wymagają pełnego opisu dla wszystkich grubości

31. W module Wyniki w menu Pokaż wprowadzono opcję Marker elementu. Opcja jest niedostępna przy pokazywaniu ugięć. Pozwala zaznaczyć wybrane elementy powierzchniowe. Markery są pokazywane cały czas chyba że się je wyłączy opcją Pokaż markery. Zaznaczenie elementów markerem ułatwia ich wybór np. przy obliczaniu zbrojenia. Włącza się wtedy Obwiednię -Maksimum, następnie naprężenie główne \Box_1 i analizuje naprężenia na stronie (+) i (-) elementu powierzchniowego, dla kolejnych składowych wiodących ($\Box_{x'}, \Box_{y'}, \tau_{x'y'}$)

 Statyka Dynamika niowe Suflera ane Porady i opisy /suj Różne . Y X Współrzędne + 4 + Odczyt odległości Z YZ Marker elementu Pokaż markery sie Gabaryty ament Wymiary

elementowym, ale na planszy założeń można zadać kat obrotu w stosunku do układu elementowego. Ta opcja ma zastosowanie przy złożonych kształtach modelu np. przy spiralnych podjazdach w których trudno wybrać płaskie miejsce do zwymiarowania.

Układ wkładek Cały model

Wybór obszaru

Marzec 2011

33. Przywrócono jawne sterowanie kolejnymi schematami przy rozkładaniu obciążeń zmiennych. Teraz klikając w opcję Następny schemat można wybierać obszar z obciążeniem dla kolejnego schematu zmiennego. Opcja Ten sam schemat pozwoli wybrać obszar z obciążeniem należącym do wcześniej wybranego schematu.

Pionowa X Pionowa Y	<u>Osie</u> <u>Fragment</u>
• Pionowa Z	:1 Powiększ
Rzut na XY	
Rzut na XZ	
Rzut na YZ	
Rzut na IJK	Zamknij
Obrót	
Wokół X	
Wokół Y	
Wokół Z	
K	

Kwiecień 2011

34. W menu Osie wprowadzono opcję Rzut na IJK, która pozwala pokazać rzut modelu na dowolną płaszczyznę wyznaczoną trzema wezłami.

okaż ?

iniowe

Stan zgięciowy

Stan tarczowy

Zadaj własne

~	Następny schemat							
	Ten sam schemat							
•	Wybór oknem							
	Odcinkiem							
	Linią łamaną							
	Łukiem							
	Wielokątem							
	Odchyłka.,							
	Zakończ							

35. Wprowadzono obciążenie silosu wg PN-EN 1991-4 Obciążenie jest przykładane do części walcowej jak i do stożkowego leja. Przygotowano opis w formie pliku .DOC i dwa przykładowe zadania, które ułatwiają poznanie zasad obowiązujących przy zadawaniu tego obciążenia.

lios kołowy wg PN-EN 1991-4		Silos kołowy wg PN-EN 1991-4	
Dpis Na walec 🔽 Silos smukły	?	Opis Na stożek 🔽 Silos smukły 📑	
Ciężar objętościowy 15 kN/m^3 + (właściwy)		Ciężar objętościowy (właściwy) 15 kN/m^3	
Współczynnik tarcia 0,1		Współczynnik tarcia 0,1	
Iloraz parcia bocznego K 0,6351			
Kąt tarcia wewnętrznego 25°		Wsp.zwiększający 1.0	
		obciążenie dna Cb	
Wsp.Z powierzchni zastępczej zasypu	Anuluj	Wsp.Z powierzchni zastępczej zasypu 4 m	Anuli
Napełnianie Opróżnianie		Napełnianie Opróżnianie	
Wop. parcia poziomego Ch 1,0 📫		Wsp. parcia poziomego Chr 1,0 🔹	
Wsp. tarcia o ścianę Ow 1,0 📫		Wep.tarcia o ściane Cw 1,0	
Wep.obciążenia dna Cb 1,0 🔹		Wep.obciążenia dna Cb 1,0 🔹	
Kształt silosu		Kształt silosu	
🔿 Z płaskim dnem 💿 Z lejem stożkowym		🕤 Z płaskim dnem 💿 Z lejem stożkowym	
Wybierana część silosu		🕞 Wybierana część silosu	
Walcowa		C Walcowa 💿 Stożkowa	
Wewnętrzna strona silosu musi być niebieska		Wewnętrzna strona silosu musi być niebieska	
Elementowe osie x` muszą być skierowane w kierunku dna silosu	ОК	Elementowe osie x° muszą być skierowane w kierunku dna silosu	ОК

Maj 2011

36. Wprowadzono możliwość wczytywania pliku tekstowego z siłami skupionymi. Opcja Obciążenia z pliku pokazuje się po zadaniu minimum jednego schematu. Po jej wywołaniu otwiera się okno wyboru pliku z rozszerzeniem .TXT w którym będą opisane siły skupione. W pierwszej linii tego pliku jest komentarz z opisem pliku. Następne linie mają taką strukture:

- Numer kolejny linii,
- Numer schematu w którym będzie obciążenie,
- Współrzędne X, Y i Z punktu przyłożenia,
- Siły Px, Py i Pz,
- Momenty Mx, My i Mz (momenty mogą być opuszczone).

2222 C
Obeigżenia
• isy
<u>każ</u>
u
► <mark>γskaj</mark>
zenia
a <mark>) niki</mark>

Nr	Schemat	Wsp.X	Wsp.Y	Wsp.Z	Siła X	SiłaY	Siła Z					2
est												
1	2	0	0	0	0	10	-50					
2	2	5,233	0,0306	0	5	8	-10					
3	3	1,5	0	0	0	10	-50					
4	3	5,648	0,242	0	6	7	-10					
5	4	3	0	0	0	10	-50					
6	4	5,85	0,479	0	7	6	-10					
												A
iorm	at (mienny	wsp. 3		Atrybut Stały CZmien	ny		−Typsi CS	skupi ywęzi	onych - owe		Sąsiedztwo nie większe od:	
1 2	otary	sity 0		C Wanin	kowa		(• S	y polo	we		0,00 111	

Współrzędne punktu przyłożenia i składowe obciążenia zadawane są w globalnym układzie współrzędnych. Współrzędne punktu przyłożenia nie muszą pokrywać się z węzłami siatki, Ważne jest, aby punkt ten należał do jakiegoś elementu. Takie siły nazywane są siłami polowymi. Siły te mogą być przykładane do pochyłych płaszczyzn, przy czym kąt pochylenia nie może być większy od 45°. Schematom można od razu zadać atrybut. Parametr Sąsiedztwo jest wykorzystywany w układach prętowych, przy określaniu obciążonego elementu.

Tak samo zmienia się struktura pliku z siłami wczytywana przy zadawaniu sił skupionych w wybranym schemacie. Wtedy pozycja Numer schematu będzie ignorowany i wszystkie siły z pliku zostaną zadane w tym schemacie. W tym przypadku można wybrać typ sił skupionych: węzłowe lub polowe. W pierwszym przypadku deklaruje się jeszcze co ma się dopasować: siły do węzłów, czy węzły do punktów przyłożenia sił. Jeśli odległość punktu przyłożenia od najbliższego węzła będzie większa od zadanego sąsiedztwa to taka siła zostanie opuszczona. Będzie to sygnalizowane.

37. Wprowadzono możliwość zadawania sił ruchomych typu: Drogowe i Dowolne po pochylniach o kącie nachylenia do poziomu nie większych od 45°.

38. Wprowadzono możliwość zadania układu podpór z pliku. Postać pliku tekstowego jest następująca:

w pierwszej linii jest słowny komentarz, w następnych są liczby: numer kolejny, współrzędne (X, Y, Z) punktu podparcia (jednostka [m]), sztywności liniowe w kierunku osi X, Y, Z (jednostka [kN/mm] i sztywności skrętne wokół osi X, Y, Z (jednostka kNm/°). Zero oznacza brak podparcia w danym kierunku. Wartość –1 oznacza, że ta składowa podporowa jest sztywna. Sztywności skrętne można pominąć. Sztywne., Podatne., Z piku., Słupy., Ściany., Pokaż ?

Po wczytaniu pliku jego zawartość zostanie wyświetlona na planszy.

Plik	z podati	nymi pod	lporami						- X
١	Ir Wsp.X	Wsp.Y	Wsp.Z	Podat X	Podat Y	Podat. Z			2
Te	st								
1000	1 0	0	0	0	0	50			
	2 12	0	0	0	0	30			
	3 12	3	0	0	0	Sztywna			
	4 0	1 3	0	0	0	Sztywna			
	56	i 0	0	0	0	Sztywna			
	66	i 1,5	0	0	0	Sztywna			
	7 6	i 3	0	0	0	Sztywna			
									<u>Anuluj</u>
- 1	and the second sec			5					
FFC	irmat			- Dopasc	wanie		Sąsiedztwo		
0	Zmienny	Wsp	3 -	@ Podp	oory do węzł	ów siatki	nie większe od:	Podatność (X, Y, Z) [kN/mm]	
0	Stały	Silv	0	C Was	v cietki do n	odnór	0.03 m		
				VVĘ24	y slatki du p	oupor	1		ОК

Punkty podparcia mogą być sprowadzane do węzłów siatki jeśli znajdą się obok siebie w odległości nie mniejszej od zadawanego sąsiedztwa. Można też przesunąć węzły siatki. Jeśli podpory z pliku zostaną opuszczone będzie to sygnalizowane. W modelu mogą być podpory wczytane z pliku i podpory wprowadzane innymi opcjami.

Sierpień 2011

39. Wprowadzono pytanie: Czy model jest wieloobszarowy? Jeśli użytkownik w sposób celowy wprowadził w modelu więcej niż jeden obszar np. przez przyjęcie dylatacji w płycie to może kontynuować obliczenia. Jeśli wieloobszarowość powstała jako niezamierzony efekt modelowania, np. nie połączona z resztą ściana w zadaniu 3D to program pokaże element z tego miejsca i zaproponuje połączenie tych obszarów.